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Executive summary 
Filling the STEM pipeline from secondary schools to postsecondary institutions is essential for 
the nations’ competitiveness in the 21st century. It is therefore crucial to motivate more high 
school students to consider entering one of the STEM fields and to prepare themselves by taking 
advanced coursework in STEM that will prime them for choosing a STEM major in college, and 
eventually, a STEM career. High school students’ pathway to a college STEM major can be seen 
as related to a series of academic choices (e.g., middle school STEM related activities, high 
school STEM coursetaking, and outside of school activities) and achievements that begin in early 
schooling years and continue to develop in secondary school (Eccles, 1994; Wang, 2013; Wang 
& Degol, 2013). This current study builds off the results of two other studies conducted under 
the ESSIN Task 14 contract with NCES—Mathematics Motivation and its Relationship with 
Mathematics Performance: Evidence from the NAEP-HSLS Overlap Sample and Examining 
STEM Course-taking in High School in the Prediction of Grade 12 NAEP Mathematics Scores 
and develops a comprehensive conceptual framework to describe how high school STEM 
coursetaking, STEM GPA, and motivational beliefs on science and mathematics are related to 
students’ decisions about whether to choose a STEM major at 4-year college after taking into 
consideration student, family, and school background factors. The conceptual framework focuses 
on the direct relationships between five factors and choosing a STEM major in college: 
mathematics motivation, science motivation, high school STEM coursetaking, STEM 
achievement, and social networks. 

The results of simple comparisons of mathematics and science motivation between students in 
STEM- and non-STEM majors indicated that STEM-major students have a higher level of 
mathematics and science motivation in all four measured constructs (mathematics identity, 
mathematics self-efficacy, science identity, and science self-efficacy) compared to non-STEM 
major students. 

The SEM model results, which take into consideration of factors for other high school 
experiences, further identified the significant relationships between STEM motivation and 
having a STEM major in college. The findings suggest that science identity had the strongest 
association with students’ choice of a STEM major among all other motivation variables, STEM 
coursetaking, and achievement variables. This is followed by mathematics identity and students’ 
educational expectations. Students’ high school STEM coursetaking and their corresponding 
achievement are also found to be significantly associated with the probability of students 
choosing a STEM major at college. The SEM results suggest that taking more credits in AP 
science, engineering, and overall STEM related courses along with at least 1 Physics credit is 
critical for choosing a STEM major in college. Students’ prior STEM achievement, including 
NAEP mathematics scores and GPA in STEM courses, were statistically significant indicators of 
students’ deciding to choose a STEM major in college. Students’ demographic background 
provides social context to understand why an individual student might have chosen a STEM 
major in college. Female students were less likely to choose a STEM major in college compared 
to male students. Asian students had a higher likelihood of choosing a STEM major than White 
students. Regarding the economic status of a students’ peers at school, the results showed that 
students who enrolled at schools with more than 75 percent of free or reduced-price lunch 
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eligible students would have a lower probability of choosing a STEM major compared to 
students from schools with 25 to 50 percent of students eligible for free or reduced-price lunch. 

To summarize, perhaps most importantly the current study shows the central role that motivation 
plays in who decides to major in a STEM field in a 4-year college. Of note is the role that 
identities play. Thinking and believing in oneself as a scientist and as a person who is good at 
mathematics were shown to be key in the choice of a STEM major. Although the research 
literature suggested that self-efficacy is the key motivational construct for understanding who 
chooses a college major in a STEM subject, in the presence of measures of science and 
mathematics identity, self-efficacy showed no direct effect on choosing a STEM major. While 
this result may seem counterintuitive, perhaps it should not be. To feel efficacious about doing 
science or mathematics requires that one not only has the ability to solve problems in those areas 
but has the confidence to do so and a track record to back up that confidence. An identity in 
science or mathematics requires that one feels efficacious about solving problems in one or both 
of these areas. What distinguishes an identity is that the self—who we see ourselves as being—is 
comprised of our identities. According to McCall and Simmons (1978) and Stryker (1968) the 
self can be thought of as a hierarchy of role identities. The more prominent (important) the 
identity, the more core it is for the self, and the more likely we are to activate it in any given 
situation. It is precisely because role identities define who we are that they have such strong 
motivating power. It is for this reason that identities are more important in predicting role-related 
outcomes than self-efficacy. Self-efficacy is necessary by buttressing and supporting our role 
identities.
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Background 
Introduction 

While the coronavirus pandemic will undoubtedly affect the labor market for some time to come, 
when the market returns, it seems likely that there will be a high demand for jobs in the field of 
technology, not unlike what had been true prior to the pandemic. A principal reason supporting 
this assumption is that Science, Technology, Engineering and Mathematics (STEM) is seen as a 
critical sector of the nation’s economy (National Academy of Engineering & National Research 
Council, 2014). Prior to the pandemic, the market for science, technology, engineering, and 
mathematics (STEM) workers had been growing, although it has slowed somewhat in recent 
years. According to the Bureau of Labor Statistics (BLS), in 2014 there were about 6.1 million 
Americans working in STEM occupation and the projection before the pandemic was for just 
over 8 million workers in this sector by 2028. By far the largest growth is projected to be in the 
area of computer and information technology, a field which already is large in terms of current 
employment, and over half of the new jobs in STEM are projected to be computer or information 
technology related.1 For example, increased use of mobile devices and the addition of software 
in everything from home appliances to medical devices will create demand for application 
software developers, with employment in this occupation projected to grow by 26 percent over 
the decade. Similarly, “the need for robust online security will also rise as more connected 
devices enter homes and workplaces. This increased need for cybersecurity will drive demand 
for information security analysts, employment of which is projected to grow by 31.6 percent” 
(Dubina, K. S., Morisi, T. L., Rieley, M., & Wagoner, A. B., 2019, p.5). So, despite recent 
economic challenges, there is evidence demonstrating that technology workers will continue to 
be in high demand as the economy recovers. However, the United States faces a major challenge 
in attracting, preparing, employing, and retaining a qualified workforce for jobs in the field of 
Science, Technology, Engineering and Mathematics (STEM). 

Filling the STEM pipeline from secondary schools to postsecondary institutions is essential for 
the nations’ competitiveness in the 21st century. It is therefore crucial to motivate more high 
school students to consider entering one of the STEM fields and to prepare themselves by taking 
advanced coursework in STEM that will prime them for choosing a STEM major in college, and 
eventually, a STEM career. 

Several research studies have examined how postsecondary experiences impact student’s 
persistence and attainment in STEM fields. However, few research studies have focused on how 
high school experiences are associated with students’ entrance to a college STEM major—a 
critical first step to entering a STEM career (Wang, 2013) given about 80 percent of STEM 
college students make the decision whether to choose a STEM major in college while still in 
high school (Maltese & Tai, 2011; Tai et al., 2006). A deeper understanding of this first step, 
including the roles that motivation, peers and parents, high school STEM coursetaking, and 
STEM GPA play in choosing a STEM major in college, is key to building STEM support 

 

1 https://www.bls.gov/emp/tables/stem-employment.htm. 

https://www.bls.gov/emp/tables/stem-employment.htm
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programs in high schools that would encourage and support high school students’ aspirations to 
choose a STEM major in college and eventually a STEM occupation. 

This pathway to a college STEM major can be seen as related to a series of academic choices 
(e.g., middle school STEM related activities, high school STEM coursetaking, and outside of 
school activities) and achievements that begin in early schooling years and continue to develop 
in secondary school (Eccles, 1994; Wang, 2013; Wang & Degol, 2013). Achievement-related 
behaviors such as educational and career choice are most directly associated with individuals’ 
motivational beliefs related to STEM including interest, self-efficacy, and identity. These 
domain-specific motivational beliefs are shaped by an individual’s social environment, such as 
family background, cultural norms, abilities, social networks, and their affective reactions to 
previous experiences as they move through adolescence towards adulthood (Eccles, 1994; Eccles 
et al., 1998). In other words, one’s social environment (e.g., parents, peers, and teachers), 
individual characteristics, and experiences associated with STEM-related activities shape the 
development of students’ identities, self-efficacy, interests, and long-term life goals, which in 
turn, influences educational and career choices into STEM and non-STEM fields (Eccles, 2005). 
Therefore, when examining who chooses STEM majors in college, it is important to understand 
the role that STEM motivation, high school STEM coursetaking and achievement, and students’ 
social networks plays while also taking into account students’ demographic and social 
backgrounds. 

This report builds off the results of two other studies conducted under the ESSIN Task 14 
contract with NCES. The first (Mathematics Motivation and its Relationship with Mathematics 
Performance: Evidence from the NAEP-HSLS Overlap Sample) examined the role of 
motivational factors including mathematics interest, self-efficacy, and identity along with 
educational aspirations (measured at grades 9 and again at grade 11), performance on a grade 9 
algebra test (included in the HSLS:09 dataset), a self-report of the highest mathematics course 
taken by the end of students' junior year, and student and school socio-demographic data in the 
prediction of performance on the grade 12 NAEP mathematics assessment. Using a sample of 
students who not only participated in the HSLS:09 survey, but also grade 12 NAEP, a 
longitudinal structural equation model results demonstrated the important role that having a 
mathematical identity at grade 11 has on grade 12 mathematics achievement net of the other 
factors. 

The second report (Examining STEM Course-taking in High School in the Prediction of Grade 
12 NAEP Mathematics Scores) examined the roles that STEM coursetaking and STEM GPA 
play in the prediction of grade 12 NAEP mathematics achievement, also using the overlap 
sample of HSLS:09 participants who had their coursetaking and GPA data included in the High 
School Transcript Study and took the grade 12 NAEP assessment in 2013. The results showed 
that regarding coursetaking, the most important predictors were the number of Advanced 
Placement (AP) or International Baccalaureate (IB) credits earned in mathematics and science; 
precalculus, calculus or AP/IP calculus as the highest mathematics courses taken; and having 
earned at least one credit in either chemistry or physics while taking into account race/ethnicity, 
SES and gender. 

Using a national representative sample of the High School Longitudinal Study (HSLS:09) data 
and 2015 NAEP grade 12 mathematics assessment data, this study develops a comprehensive 
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conceptual framework to describe how high school STEM coursetaking, STEM GPA, and 
motivational beliefs on science and mathematics are related to 4-year college students’ decisions 
about whether to choose a STEM major after taking into consideration student, family, and 
school background factors. The conceptual framework focuses on the direct relationships 
between five factors and choosing a STEM major in college: mathematics motivation, science 
motivation, high school STEM coursetaking, STEM achievement, and social networks 
(see Figure 1). 

As part of a study examining the role of mathematics motivation in predicting grade 12 
mathematics achievement, Zhang et al. (2018) found that motivational beliefs (i.e., mathematics 
identity, mathematics self-efficacy, and mathematics interests), are positively related among 
themselves (both cross-sectionally and longitudinally) when examined at grades 9 and 11, but 
that only grade 11 motivational beliefs were directly related to grade 12 mathematics 
performance when both the grade 9 and grade 11 motivational measures were included in a 
structural equation model. Given this finding, the current study focuses on examining grade 11 
STEM motivational measures along with high school STEM coursetaking, STEM achievement, 
and students’ social networks in the prediction of choosing a STEM major in college. 

More specifically, this study addresses the following four research questions: 
1. What is the relationship between high school students’ STEM motivation including 

educational expectations and their choice of a STEM major in college taking into account 
family and school background factors, high school STEM coursetaking, STEM 
achievement, and students’ social networks? 

2. What is the relationship between high school students’ STEM coursetaking, and their 
choice of a STEM major in college taking into account family and school background 
factors, STEM motivation, social networks, and STEM achievement? 

3. What is the relationship between high school students’ STEM achievement, measured by 
students’ STEM GPA and NAEP grade 12 mathematics scores, and their choice of a 
STEM major in college taking into account family and school background factors, STEM 
motivation, social networks, and STEM achievement? 

4. What is the relationship between high school students’ social networks and their choice 
of a STEM major in college taking into account family and school background factors, 
STEM motivation, high school STEM coursetaking, and STEM achievement? 
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Figure 1. Conceptual framework 

NOTE: EL refers to English learner. SD refers to students with disabilities. 

Conceptual Model 

Motivation2

Motivation can be thought of as the drive or energy expended in pursuit of a goal (e.g., choosing 
a STEM major). It can either be extrinsic (based on actual or perceived rewards or punishments) 
or intrinsic (based on internalized beliefs and values about the importance of achieving the goal) 
(Deci, 1975). More generally, motivation has been defined as “the process whereby goal-directed 
activity is instigated and sustained” (Pintrich & Schunk, 2002, p. 5). Because one cannot observe 
this internal latent process, a theoretical framework is necessary for measuring motivational 
beliefs and can be “conceptualized in different ways, with different theories focusing on different 
psychological processes” (Lameva & Chonteva, 2013, p. 4). 

Much of contemporary literature on achievement motivation is grounded in the socio-cognitive 
perspective, focusing on understanding students’ cognitive processes with an emphasis on 
whether they choose to engage in learning tasks and how persistent they are while working on 
those tasks considering the interrelationships of individual’s motivational beliefs and 
environmental factors (Eccles &Wigfield, 2002). 

Modern motivational theories such as the social cognitive career theory (SCCT) and 
expectancy-value theory have provided insights on how to understand students’ academic and 
career choices in general, and more specifically, students’ decisions about entering a STEM field 
(Lent et al., 2010). The SCCT is based on Bandura’s social cognitive theory (Bandura, 1977, 
1986, 1997) which underlines how interrelationships of individual psychological constructs and 
family and social background influence individuals’ academic and career choices. Self-efficacy 
beliefs, expectations, and environmental factors are key constructs in SCCT. Similarly, 

 

2 Some of the literature review in this study draws on the literature review in Zhang et al (2018). 
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expectancy-value theory (EVT) emphasizes individuals’ cognitive processes of academic and 
career choices, with a focus on the role of individuals’ expectancies for success beliefs 
(competence-related beliefs which are similar to Bandura’s self-efficacy beliefs) and values 
related to their academic engagements (Eccles et al., 1983). Competence-related beliefs, value 
beliefs, and interests are the core motivational constructs in EVT. According to the 
expectancy-value theory and numerous empirical studies, individuals’ expectancy beliefs 
(e.g., self-efficacy and expectancies about success) lead to deeper cognitive engagement on a 
task and higher levels of performance, whereas value beliefs (e.g., interests and subjective 
values) influence tasks/activities that individuals choose to pursue (Wigfield & Eccles, 2000). 
For example, if students hold a high level of self-efficacy and value towards STEM fields, they 
are more likely to participate in STEM-related tasks or to enroll in more advanced STEM-related 
courses during their schooling years. Furthermore, the individual tends to display higher level of 
perseverance when challenges are encountered. 

Overall, motivational theories explain individuals’ academic performance and decision-making 
through the interplay of psychological constructs and social contexts. Specifically, a large body 
of research has identified self-efficacy as a particularly influential and parsimonious motivational 
construct to explain students’ academic performance and the choice of a STEM major in college 
(Jenson et al., 2011; MacPhee et al., 2013; Rittmayer & Beier, 2008). 

More recently, researchers have demonstrated that students’ identity belief is another important 
motivational factor that plays a significant role in influencing individual’s academic behaviors, 
achievement, and career choice (Eccles, 2009; Stets et al., 2017; Zhang, et al., 2018). 
Individuals’ behaviors and decisions (e.g., choosing a STEM major at college) are influenced by 
personal and social identities as well as influencing the expression of personal and social 
identities. In addition, individuals’ identities and their self-efficacy beliefs have a reciprocal 
relationship, where ones' identity can influence their self-efficacy beliefs and their self-efficacy 
beliefs can influence their identity. 

Therefore, the current study integrates self-efficacy and role identity into the conceptual 
framework for understanding high school students’ decision to choose a STEM major in college. 
The current study hypothesizes that both identity and self-efficacy are positively associated with 
the likelihood of high school students entering a STEM field in college. 

Identity 

In educational settings, identity has long been considered an important part of students’ academic 
success and persistence (Marsh, 1990, 1993; Marsh et al., 1988). More recently, researchers have 
studied the impact of social identities and role identities (e.g., mathematics identity, science 
identity) on academic and career choice, including how these identities relate to minority and 
female students’ academic choices in STEM-related fields (Chemers et al., 2011; Eccles, 2009; 
Stets et al., 2017; Syed et al., 2011). 

A social identity is defined as a person's belief that he or she belongs to a social category or 
group (Abrams & Hogg, 1988; Stets & Burke, 2000). For example, individuals classify their 
social identities through their gender or racial/ethnic group. Eccles (2009) extended the 
expectancy-value model by giving attention to the role of social identity in influencing 
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individual’s academic behaviors and performance. She focuses on the role of personal 
social/collective identity and contends that individuals’ identities can influence and be influenced 
by their efficacy beliefs or their expectation for success. This reciprocal relationship was 
demonstrated by Zhang and her colleagues (2018). Further, Eccles argues that individuals’ 
behaviors and decisions (e.g., choosing advanced STEM courses at high schools) are influenced 
by personal and collective identities as well as influencing the expression of personal and 
collective identities. That is, the relationship is a reciprocal one. For example, gender as a 
collective identity has been applied to explain why women are underrepresented at the STEM 
fields. Being a female as a collective identity comes with a stereotyped status, values, and 
role-expectations, which impacts women’s academic behaviors and career choices. 

While social identities are important in shaping individuals’ beliefs as well as their academic and 
career choices, Stets and her colleagues argue that role identities also are significant (2017) and 
demonstrated that an individual’s science identity positively impacts the likelihood of entering a 
science occupation. In role identity theory, the core of an identity is the categorization of the self 
as an occupant of a role (e.g., a scientist or a mathematician), and the incorporation, into the self, 
of the meanings and expectations associated with that role and its performance (Burke & Tully, 
1977; Thoits, 1986; Stets & Burke, 2000). From the perspective of the role identity theory, 
whether one choose a STEM major in college is dependent upon the degree to which one 
embraces a science or math identity. Measures of a science role identity, for example, would ask 
whether one sees themselves as a science person and whether others see them as a science 
person. If the answer is in the affirmative, it is hypothesized that the person would then seek to 
demonstrate this by taking increasingly more advanced STEM courses in high school and would 
choose a STEM major in college. Zhang et al. (2018) using data from the HSLS:09-NAEP 
overlap sample found that, among high school students, having a mathematics identity was 
significantly associated with NAEP mathematics performance after taking into consideration 
their mathematics self-efficacy, mathematics interests, educational expectations, and 
demographic backgrounds. This study takes a symbolic interactionist perspective, in which 
identities are a function of the meanings that people attach to the roles that they play—student, 
father, scientist, and so on (Stryker & Burke, 2000). The self is seen as composed of a hierarchy 
of identities where the more prominent or salient the identity, the higher it is in the hierarchy 
(McCall & Simmons, 1978; Stryker, 1968). Following Stone (1962), identities are established 
when significant others use the same words to describe someone as that person uses for 
themselves. Thus, to be identified, claims made for oneself must be legitimated and supported by 
significant others. For example, a student’s science identity is based not only on their own 
perceived capabilities and accomplishments in science, but also through the support of this 
perception by others. 

How parents, teachers, and friends view someone in relation to a subject (i.e., math or science) 
has an impact on that person’s perceptions of their own competence in that subject (Bleeker & 
Jacobs, 2004). For example, Wenger (1998) found that one’s perception of his or her 
mathematics identity was impacted by others in the community, which then influenced one’s 
participation within that community. Furthermore, they found others can identify skills and 
abilities in individuals, leading to new identity claims not previously discovered and 
demonstrating the reciprocal nature of identity development. In a similar vein, individual 
student’s science identity is established through personal claims that are confirmed by significant 
others in one’s life. 
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Not surprisingly, research shows that students’ role identity plays a significant role in their 
academic achievement and career choice. Eccles and Barber (1999) found that underrepresented 
minorities with a strong role identity had greater persistence to degree completion compared to 
those with strong social identities (e.g., based on race/ethnicity or gender). Carlone and Johnson 
(2007) developed a model of science identity to understand pathways to STEM careers of 
15 successful minority women. They conceptualized an individual’s science identity in terms of 
three components: competence; performance; and recognition. More specifically, they theorized 
that individuals with higher levels of self-efficacy beliefs regarding their ability to master STEM 
related subjects and content will be able to better carryout STEM-related tasks and jobs, 
reaffirming a science identity through personal experience and feedback. Their results 
highlighted that the recognition of one’s science identity plays a significant role in moving 
women of color through the STEM pipeline from postsecondary STEM majors to STEM 
occupations after graduation. 

Chemers et al. (2011) sampled 665 undergraduate and graduate students and found that having a 
science identity significantly predicted students’ commitment to science careers. Stets and her 
colleagues (2017) utilized national panel data that followed underrepresented college students in 
STEM fields from 2005 to 2013 to investigate how an individual’s science identity in the 
educational system influences the choice to enter a science occupation. They found that having a 
science identity was positively associated with students’ likelihood of entering a science 
occupation after taking into consideration of other control factors including science self-efficacy, 
STEM GPA, science activities, and demographic background. 

Not only do mathematics and science identities grow out of one’s previous accomplishments in 
mathematics and science as well as from recognition from others for those accomplishments, 
they are also related to feeling efficacious about doing mathematics and science, as both an 
antecedent and consequence of having a mathematics or science identity. These in turn leads to 
additional mathematics and science pursuits, such as an increased number of challenging 
mathematics and science courses, and the eventual decision to pursue a college degree in a 
STEM field. 

Self-Efficacy 

Bandura (1994) defined self-efficacy as: people’s beliefs about their capabilities to produce 
designated levels of performance that exercise influence over events that affect their lives. 
Self-efficacy beliefs determine how people feel, think, motivate themselves, and behave. Such 
beliefs produce these diverse effects through four major processes. They include cognitive, 
motivational, affective, and selection processes (p. 71). 

Zimmerman (2000) summarized that (1) Self-efficacy measures focus on performance 
capabilities rather than personal qualities, such as physical or psychological capabilities; 
(2) Self-efficacy beliefs are multidimensional and differ on the basis of the domain of 
functioning (e.g., self-efficacy beliefs about performing on a mathematics test may differ from 
beliefs about performance on a reading test); (3) Self-efficacy beliefs depend on a mastery 
criterion of performance rather than on normative or other criteria (e.g., students evaluate how 
well they are at solving an arithmetic problem, not how well they expect to do on the problem 
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compared with other students); and (4) Self-efficacy beliefs specifically refer to future 
performance and are assessed before students perform the relevant activities. 

In Eccles’s expectancy-value theory, self-efficacy beliefs are referred to as competence-related 
beliefs and are of two types: ability beliefs and expectancy beliefs (Eccles et al., 1983; Wigfield 
& Eccles, 2000). Ability beliefs are defined as individuals’ perceptions of their current 
competence, particularly in a specific domain such as mathematics or science. These beliefs 
reflect evaluations not only of their own ability, but how their ability compares to others. 
Expectancy beliefs refer to how one thinks he or she will do on future tasks, either in the 
immediate or longer-term future. Expectancy-value theorists hypothesize that expectancies for 
future performance are influenced by ability beliefs, the perceived difficulty of different tasks, 
individual goals, and previous experiences. For example, individuals’ beliefs about their 
mathematics ability comes from many years of experiences with mathematics and reflect their 
own evaluation of their current skills in mathematics. Individuals’ expectancies refer to how they 
think they will do in the future (e.g., in an upcoming mathematics course), and they base their 
expectancies of success primarily on their beliefs about their ability in math. As important as 
these two constructs are theoretically, empirical research has shown that they cannot be easily be 
differentiated (Eccles & Wigfield, 1995; Eccles et al., 1993). Eccles and Wigfield (2002) 
concluded that, “[a]pparently, even though these constructs can be theoretically distinguished 
from each other, in real-world achievement situations they are highly related and empirically 
indistinguishable” (p. 119). 

The formulation of self-efficacy through expectancy-value, with its emphasis on ability and 
expectancy beliefs, supports Bandura’s self-efficacy theory, given its stress on individuals’ 
beliefs about their capabilities to generate performances that have influence over events that 
impact their lives. 

In modern symbolic interaction theory, self-efficacy is increased by self-verification of an 
identity in that it leads to a sense of control over the role-related environment (Stets & Burke, 
2000). However, that sense of control also motivates behaviors that provide the opportunity to 
verify identities. Ervin and Stryker (2001) postulated that self-efficacy is both an antecedent as 
well as a consequence of role-related identity behaviors. Brenner et al. (2018) examined the 
reciprocal relationship between role-specific self-efficacy, identity prominence, and identity 
salience using four waves of data from a longitudinal study of underrepresented college students 
in STEM fields. Identity prominence is seen as the affective component of identity; that is, it is 
the subjective value assigned to an identity (McCall & Simmons, 1978) while identity salience is 
defined as the probability that a given identity will be enacted in a particular situation or setting 
(Stryker, 1968, 2004). Brenner et al. (2018) found that science self-efficacy was related to 
identity prominence, which in turn was related to identity salience. While the direct relationships 
between identity prominence and salience and role-specific self-efficacy over time were 
statistically significant, both relationships were weak. 

Self-efficacy has been considered an essential motivational construct to understand student’s 
academic achievement and behaviors (Zimmerman, 2000). Extensive research indicates that 
students with lower mathematics self-efficacy or lower perceived competence in mathematics 
perform less well on mathematics tests compared to students with higher mathematics 
self-efficacy (Eccles, 2009; Valian, 2007; Wigfield et al., 2006; Zimmerman & Kitsantas, 1997, 
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1999). In addition, students with higher perceived competence in mathematics are more likely to 
enroll in advanced mathematics courses, participate in mathematics clubs, and choose a 
quantitative college major (Dweck, 2008). Similarly, students’ science self-efficacy beliefs 
positively influence students’ science achievement (Britner, 2008; Britner & Pajares, 2006; 
Cohen & Chang, 2020). Britner (2008) studied how self-efficacy impacted high school science 
students’ achievement in life, physical, and Earth science subject areas. Students’ self-efficacy 
beliefs were a significant predictor of science grades across three subjects, though the positive 
relationship differed by gender. Cohen and Chang (2020) used Trends in International Math and 
Science Study 2011 data to investigate how science self-efficacy, value in learning science, 
science attitudes, gender, and race impact science achievement among United States middle 
school students. Their finding revealed that self-efficacy is positively related to students’ science 
achievement, but the level of self-efficacy varied among gender and racial/ethnic groups. 

In addition, self-efficacy has been linked to students’ college major and career choices, 
particularly in the STEM areas (Lent et al., 1986, 1991; Pajares, 1996; Williams & 
George-Jackson, 2014). Researchers have reported that the mathematics self-efficacy of college 
students has a larger impact on their choice of math-related courses and majors than their prior 
mathematics achievement (Hackett, 1985; Hackett & Betz, 1989; Lent et al., 1991; Pajares & 
Miller, 1994, 1995). Lent et al. (1991) examined mathematics self-efficacy and its relation to 
career selection in science-related fields for college students. The results revealed that 
mathematics self-efficacy predicts interest and course selection in mathematics-related areas. 
Sahin et al. (2017) studied 2,246 high school graduates from a STEM-focused public school in 
Texas and found that high school students with higher levels of mathematic self-efficacy and 
science self-efficacy are 1.33 times and 1.37 times more likely to select a STEM major in 
college, respectively. Williams & George-Jackson (2014) studied 1,881 college students whose 
majors were in STEM-related fields. They found that “students’ confidence and beliefs about 
their own abilities and skills have a much greater impact on using their scientific skills and 
knowledge than the extent to which they see themselves as a scientist, or to the extent that there 
is a gender-based interaction” (p. 115). 

Overall, it can be inferred that having a strong sense of self-efficacy in mathematics and science 
significantly impacts students’ choices of entering STEM majors in college and eventually 
having career success in STEM. Both students’ role identity and self-efficacy have important 
implications for students in science- and mathematics-based majors. For the current study, 
student role-identity and self-efficacy will serve as important lenses of analysis to understand the 
extent to which both constructs impact students’ decision of entering a STEM major in college. 

Educational Expectations 

In addition to the two motivation variables noted above, adolescents’ expectations about their 
future educational attainment are also important as they influence academic choices, decisions, 
behaviors, and activities as well as academic achievement (Nurmi, 2004; Zhang, et al., 2018). 
High school seniors’ educational aspirations as part of the Wisconsin Longitudinal Study of 1957 
were the strongest predictor of educational outcomes seven years later (Gasson et al., 1972; 
Sewell et al., 1970; Sewell & Shah, 1968). Additionally, Bozick et al. (2010) used data from the 
Wisconsin Longitudinal Study to show that stable educational expectations across individuals’ 
school careers are important predictors not only of school performance but also of long-term 
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status attainment. Ou and Reynolds (2008) investigated the relationship between student 
educational expectations and educational attainment among 1,286 low-income, minority students 
who grew up in an urban area and found that students’ expectations were one of the strongest 
predictors of educational attainment. Lichtenberger and George-Jackson (2013) investigated 
factors that influenced student’s early interest in taking a STEM major in college using a random 
sample of the Illinois High School Graduating Class of 2003. They found that a higher level of 
student educational expectations increased the likelihood of having an early interest in STEM. 

Researchers also suggest that students’ educational expectations influence their academic-related 
decisions and activities, such as taking a higher-level STEM course in high school, thus shaping 
their academic achievement and ultimate educational attainment. Beal and Crockett (2010) 
conducted a longitudinal study of 317 adolescents and found that the students’ educational 
expectations significantly predicted their likelihood of participation in academic activities 
(e.g., school science fair, math club). 

STEM course learning experiences and STEM achievement 

Empirical evidence has demonstrated that high school math and science coursetaking is 
influential in high school students’ pursuit of a STEM major in college and eventually a career in 
STEM disciplines (Trusty, 2002; Federman, 2007; Tyson et al., 2007; Rask, 2010; Gottfried, 
2015). Tyson et al. (2007) found that Florida students who took calculus courses in high school 
were more likely to obtain STEM degrees in college compared to those who did not, although 
this same pattern was not followed for students who took Algebra Ⅱ as their most advanced math 
course as compared to students who only took Algebra Ⅰ or Geometry. Similarly, students who 
completed Chemistry Ⅱ or Physics Ⅱ were more likely to get a STEM degree than students who 
did not take these courses, and the role of high school Physics courses in particular was 
important in influencing the future attainment of a STEM focused degree. The finding revealed 
that: 

Students in the Physics Ⅰ category obtain STEM degrees at 18.7 percent, above the 14.0 percent 
the rate for all baccalaureate degree recipients. The Chemistry Ⅱ or Physics Ⅱ group produces the 
largest percentage of STEM students at 39.8 percent, but this was only the case for 72 of 425 
students. Physics course-taking is a primary factor in STEM attainment. Almost three quarters of 
baccalaureate degree recipients (1,693, 72.8 percent) took Physics Ⅰ. This suggest some 
advantage over students who took Chemistry, even though 1,417 (61.0 percent) of students who 
took Chemistry completed a STEM bachelor’s degree. Still, only 8.8 percent of students who 
took Chemistry Ⅰ, but not Physics Ⅰ completed a STEM bachelor’s degree (p. 258). 

This study emphasizes the importance and value of taking high-level coursework in both 
mathematics and science during high school for the completion of a STEM degree in college. 

Rask (2010) investigated attrition among STEM majors by using college administrative data for 
the graduating classes of 2001–2009 from a Northeastern liberal arts college with approximately 
5,000 graduates. The findings indicated that college students’ pre-collegiate preferences in high 
school played an important role in STEM attrition rates. Both the number of AP credits and high 
school intended college major were the most consistent and important influences on the decision 
to complete a STEM major. The results suggest that focusing on high school preparation 
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(especially AP credits) and preferences for majoring in a STEM discipline in college would not 
only increase the number of students declaring a STEM major in college, but also play a 
significant role in helping students persist to graduation with a STEM major. 

Gottried (2015) used the Education Longitudinal Survey (ELS:2002) data to investigate how 
high school students’ mathematics, science, and applied STEM coursework is associated with the 
likelihood of students declaring a STEM major in college. The study found that high school 
students who took more advanced mathematics courses (e.g., Trigonometry and Calculus), were 
more likely to choose a STEM major in college than students taking less advanced mathematics 
courses. Similarly, students who took more advanced science courses (e.g., Advanced Chemistry 
and Physics) had higher odds of declaring a STEM major in college. The study also found that 
taking applied STEM courses (e.g., Information Technology and Scientific Research and 
Engineering) was associated with higher odds of declaring a STEM major in college. Overall, 
research findings suggest that both academic and applied STEM learning in high school appear 
to be key factors in increasing probability of declaring a STEM college major and graduating 
from college with a STEM degree. Research also indicates that students’ academic achievement 
in STEM related subjects has a positive relationship with students’ likelihood of entering a 
STEM major in college. Radunzel et al. (2017) investigated around 91,000 four-year college 
students across 43 postsecondary institutions in the United States who were first-time college 
enrollees between the years 2005 and 2009. They found that higher levels of mathematics and 
science achievement in high school increased the likelihood of students declaring a STEM major 
in college. 

Social networks 

Students’ social networks play an important role in shaping their behaviors and decisions. 
Parents and peers are typically the two most important social networks for high school students. 
Both parents and friends have significant influence on students’ school performances and college 
decisions (Fehrmann et al., 1987; Hossler & Stage, 1992). 

Research has also shown that parental expectations are positively correlated with students’ 
educational success (Benner & Mistry, 2007; Catsambis, 2001). In addition, parental 
expectations are more influential on students’ college choices than teacher or peer expectations 
(Brasier, 2008; Ma, 2001). According to Rutchick et al. (2009), parental expectations also 
change students’ expectations for themselves. Their longitudinal studies found that parental 
educational expectations measured at the beginning of the study continue to impact students’ 
academic performance even five years later. Archer et al. (2013) found that aspirations in STEM 
occupations are also impacted by parents’ attitudes. Sahin, Ekmekci and Waxman (2017) 
investigated more than 2,000 high school students from Texas and found that students whose 
parents had a college degree are more likely to major in STEM fields than those whose parents 
did not. Moakler and Kim (2014) used national freshmen survey data and found that students 
were more likely to choose STEM majors if their parents are in STEM occupations. In summary, 
students’ STEM academic and career choices are directly impacted by parental expectations, 
attitudes, and occupations (Lee et al., 2015; Leppel et al., 2001). 

Friends are another important component of students’ social network—a component that plays a 
role in influencing students’ academic and career choices. Riegle-Crumb, Farkas, and Muller 
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(2006) investigated how friend groups impacted high school male and female students’ advanced 
coursetaking. They found that female students’ friend groups had a strong impact on their 
advanced-coursetaking patterns, especially in the areas of mathematics and science, which 
inevitably influence their decisions to choose a STEM major in college. Raabe, Boda, and 
Stadtfeld (2019) investigated large-scale panel data on adolescents from Sweden and found that 
students adjust their preferences for their education and career to those of their friends. For 
example, female students tend to keep their STEM preferences when their friends also like 
STEM. 

Hypothesized conceptual model 

This study’s hypothesized conceptual model takes a comprehensive perspective in investigating 
the direct relationships between high school STEM learning experiences and the likelihood of 
students entering a STEM major in college, with an emphasis on motivational beliefs. Four 
aspects of high school experiences are included in the model: (1) STEM motivation; (2) STEM 
coursetaking; (3) STEM achievement; and (4) Social networks. 

The current framework is embedded in the Social Cognitive Career (SCC) theory, which 
incorporates students’ motivational beliefs, academic behaviors, and their social and contextual 
background into one model to help understand high school students’ choice of a STEM major in 
college. 

Methods 
Data Source and Sample 

This study uses two datasets: (a) the full HSLS:09 data from multiple waves including Base Year 
(2009), First Follow-up (2012), 2013 Update (2013), High School Transcript (2013–2014), and 
Second Follow-up (2016); and (b) the special overlap sample of approximately 3,480 students 
who participated in the High School Longitudinal Study of 2009 (HSLS:09) and also took the 
2013 Grade 12 National Assessment of Educational Progress (NAEP) Mathematics Assessment. 
In addition, a two-stage multiple imputation was conducted to compute the projected NAEP 
mathematics achievement scores for the full HSLS sample members. First, the imputation was 
implemented for the full HSLS sample members’ background variables selected in the current 
study. Therefore, the full HSLS sample members’ imputed NAEP plausible values were able to 
be computed by conditioning on all HSLS variables. Then, a latent regression imputation model 
was used to generate the NAEP plausible values for the full HSLS sample members (Ogut, 
Bohrnstedt & Broer, 2015). 

The HSLS:09 base year took place in the 2009–10 school year, with a randomly selected sample 
of fall term ninth graders from a sample of over 900 schools and over 25,000 students. Students 
took an algebra assessment and a survey online in their schools. The first follow-up of HSLS 
took place in the spring of 2012 when most participants were in the spring of their eleventh 
grade. The first follow-up (2012) survey covered topics such as students’ STEM motivation, 
mathematics and science extracurricular participation, and school experiences. The 2013 Update 
collected information on students’ college plans and choices, college applications, financial aid 
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applications and employment experiences. High School Transcripts (2013–2014) collected 
students high school grades, including STEM and AP courses taken. The second follow-up was 
conducted in 2016, when most sample students were three years beyond high school graduation. 
It collected students’ postsecondary education and employment data, including self-reported 
STEM major status and degree attainment status. 

The missing values of key variables included in the conceptual model were imputed for the full 
HSLS sample using the Multivariate Imputation by Chained Equations (MICE) procedure. 
Twenty sets of imputations were conducted for the current study. Appendix A describes details 
of the techniques used for handling missing values. 

As a result of imputation, the NAEP-HSLS overlap sample provides an opportunity to examine 
the predictive validity of grade 12 NAEP mathematics scores for college enrollment and the 
choice of a STEM major. The current study investigates whether NAEP scores are associated 
with the probability of students’ entrance to a STEM major in college, as well as the direct 
relationships between other HSLS variables, including motivational variables and STEM 
coursetaking variables, and the likelihood of students entering a STEM field in college. Grade 12 
NAEP mathematics score is an overall score for mathematics, which is a composite of five 
subscales: (a) number properties and operations; (b) measurement; (c) geometry; (d) data 
analysis, statistics, and probability; and (e) algebra. NAEP scale scores are reported as “plausible 
values” because, by the NAEP assessment design, students are administered only a small subset 
of the total pool of assessment items, not representing the whole assessment domain.3 Multiple 
imputation procedures are then used to produce a set of 20 “plausible values” (e.g., plausible 
scores) for each student taking the mathematics assessment. In generating the plausible values, 
NAEP uses a “conditioning model” that includes all the variables from the various contextual 
questionnaires NAEP collects along with the responses of students to the particular portion of the 
assessment items that they are assigned. The proper analysis of NAEP data requires that the 
variables included in the analysis are also included in the conditioning model. This requirement 
posed a problem for the analyses in this study given that many of the variables came from the 
HSLS questionnaires. A previous study conducted by AIR demonstrated that using the NAEP 
plausible values not conditioned on variables from the HSLS contextual student questionnaire 
produced biased results (Zhang et al., 2018). Therefore, a new set of 20 plausible values 
conditioning on all variables used in the current study for the full HSLS sample was produced for 
the 20 imputed datasets from the MICE procedure. As a result, a total of 400 datasets were 
created for the final analyses. The details of the imputation procedure for the NAEP plausible 
values can be found in Appendix A. 

There were 13,433 students who participated in all waves of the study and who also had 
transcript data available. Because the study uses multiple waves of the HSLS survey, 
longitudinal weights, made available by NCES, were applied for the analyses to account for 
differential selection probabilities and patterns of nonresponse at each wave of the study. The 
current study investigates students’ choice of STEM major in college, therefore the HSLS 
sample students who did not report enrollment in a 4-year postsecondary college between high 

 

3 For more information, see NAEP technical documentation on the web: 
http://nces.ed.gov/nationsreportcard/tdw/analysis. 

http://nces.ed.gov/nationsreportcard/tdw/analysis/
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school graduation and February 2016 were excluded from the final analytic sample. Only 4-year 
college enrollees were used because an exploratory analysis indicated 2-year college students 
differ in demographics, achievement, and motivation from 4-year college students, indicating 
that separate analyses are needed for 4-year and 2-year college students. Since only students who 
had enrolled in a 4-year college were used, the final analytic sample contained around 
6,820 students. 

Variables 

This section summarizes outcome and independent variables that were used in the current study 
based on the hypothesized conceptual framework. 

Outcome Variables 

The main outcome variable is students’ choice of major at 4-year colleges. It is a dummy 
variable with 1 indicating a STEM major and 0 representing a non-STEM major. STEM majors 
can include a wide range of disciplines. For example, the National Science Foundation (NSF) 
identifies STEM majors as mathematics, natural sciences, engineering, computer and 
information sciences, psychology, economics, sociology, and political science. However, recent 
federal and state legislative efforts have focused on improving STEM education mainly in 
mathematics, natural sciences, engineering, and technology (Kuenzi et al., 2006). One such effort 
with a more restrictive STEM definition is called the National Science and Mathematics Access 
to Retain Talent (SMART) definition; it excludes the social and behavioral sciences.4 More 
specifically, only the following fields were designated as STEM majors by SMART5: Computer 
Sciences; Engineering; Life Sciences; Mathematics; Physical Sciences; and Technology. 

To identify who was a STEM major, if a student reported a major in a STEM field as the degree 
they were working towards at any time during their postsecondary enrollment between high 
school graduation and February 2016, they were considered a STEM major (including, in the 
case of double majors, one of the two majors being a STEM major). This was true whether the 
student was actively working towards a degree in February 2016, had completed it, or had 
stopped pursuing it. 

Independent Variables 

STEM Motivation. Students’ psychological beliefs are hypothesized to play an important role in 
impacting students’ decisions to enter a STEM major in college, including students’ STEM 
motivation and their educational expectations. 

The current study focused on motivation related to two specific subject areas: mathematics and 
science, which arguably are the most essential STEM disciplinary areas. Students’ mathematics 

 

4 Details about SMART Grants STEM eligible majors can be found at 
https://www2.ed.gov/rschstat/eval/highered/smart-grant/acg-smart-grant-report-year-third-final.pdf. 

5 SMART Grants STEM eligible majors also include agriculture, natural resources, and multidisciplinary studies. 
However, the current study did not include these majors. 

https://www2.ed.gov/rschstat/eval/highered/smart-grant/acg-smart-grant-report-year-third-final.pdf
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and science motivation were measured both at grade 9 and 11 in HSLS:09, with items assessing 
students’ subject-specific identity and self-efficacy. A previous AIR NAEP research study has 
investigated how mathematics motivation evolved longitudinally from grade 9 to grade 11 and 
its impacts on students’ grade 12 mathematics achievement (Zhang et al., 2018). That study 
found that when both grade 9 and 11 mathematics identity and self-efficacy were in the model, 
only the grade 11 motivational variables were significantly associated with grade 12 mathematics 
achievement. Therefore, the current study targeted the role of grade 11 (the most recent follow-
up) students’ STEM motivational beliefs on students’ entrance to a STEM major at college. 
Given that the same wording was used for motivation items in both mathematics and science 
questionnaires, only mathematics identity and mathematics self-efficacy items are described in 
detail. 

To measure mathematics identity, students were asked to report how strongly they agreed with 
the following statements: (1) You see yourself as a mathematics person; and (2) Others see you 
as a mathematics person. The items were coded as (0) Strongly disagree, (1) Disagree, (2) Agree, 
and (3) Strongly agree. For mathematics self-efficacy, students were asked how strongly they 
agreed with the following statements: (1) You are confident that you can do an excellent job on 
tests in this course; (2) You are certain that you can understand the most difficult material 
presented in the textbook used in this course; (3) You are certain that you can master the skills 
being taught in this course; and (4) You are confident that you can do an excellent job on 
assignments in this course. All items were coded as (0) Strongly disagree, (1) Disagree, 
(2) Agree, and (3) Strongly agree. 

In addition, students’ educational expectations were measured at grade 11 by asking “As things 
stand now, how far in school do you think you will get?” The responses for this question were 
recoded as (1) Less than Associate’s degree, (2) Completion of Associate’s degree to less than 
Bachelor’s degree, (3) Completion of Bachelor’s degree to less than Master’s degree, 
(4) Completion of Master’s degree to less than Ph.D./M.D./law degree/high level professional 
degree, and (5) Completion of Ph.D./M.D./law degree/other high level professional degree. 

STEM coursetaking. The second part of the conceptual framework focuses on students’ STEM 
coursetaking behaviors in high school. Four items were included to capture students’ total 
Carnegie credits6 earned in (1) AP and IB Mathematics courses, (2) AP and IB Science courses, 
(3) Engineering and Technology courses, and (4) STEM courses overall. Additionally, a 
dichotomized item was used to indicate whether students earned at least one Carnegie unit in 
Physics. Physics was chosen since it is generally regarded as the most difficult of the various 
science courses that a high school student could take, which was also supported by the data. 

STEM achievement. In terms of students’ high school STEM achievement, the analyses 
included the student’s NAEP mathematics score at grade 12 in 2013 and the student’s grade 
point average (GPA) in STEM courses. The NAEP grade 12 mathematics score, theoretically 

 

6 The Carnegie unit is a measure of the amount of time a student has studied a subject. A total of 120 hours in one 
subject earns the students one “unit” of high school credit (see https://www.carnegiefoundation.org/faqs/carnegie-
unit for details). 

https://www.carnegiefoundation.org/faqs/carnegie-unit/
https://www.carnegiefoundation.org/faqs/carnegie-unit/
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ranging from 0 to 300, consists of 20 plausible values per student while student’s GPA in STEM 
courses ranged from 0 to 4 points. 

Social networks. Given the conceptual model, variables measuring students’ social networks 
focus on their parents’ and friends’ influences. Parental educational expectations were derived 
from the first follow-up parent questionnaire in HSLS:09 asking parents how far in school they 
thought their child would go. The responses indicated the highest level of education parents 
expected the child to achieve. The categories were grouped and recoded as: (1) Less than 
Associate’s degree, (2) Completed Associate’s degree but less than Bachelor’s degree, 
(3) Completed Bachelor’s degree but less than Master’s degree, (4) Completed Master’s degree 
but less than Ph.D./M.D./law degree/high level professional degree, and (5) Completed 
Ph.D./M.D./law degree/high level professional degree. 

Whether a parent had a STEM occupation or not was also hypothesized to influence the choice 
of a STEM major. Therefore, a dummy variable was generated to indicate if either parent’s 
current or most recent job was in a STEM occupation when surveyed at the baseline or at the 
first follow-up. Occupations in Life and Physical Science, Engineering, Mathematics, and 
Information Technology are categorized as STEM occupations. This categorization of STEM 
occupations follows the Occupational Information Network (O*NET) taxonomy. The O*NET 
Program is the nation’s primary source of occupational information, which is developed under 
the sponsorship of the U.S. Department of Labor/Employment and Training Administration 
through a grant to the North Carolina Department of Commerce. 

Finally, a latent variable was created to capture the influence of a student’s friends. Students 
were asked whether the following items were true or false for their closest friend at grade 9, 
including (1) gets good grades, (2) is interested in school, (3) attends classes regularly, and 
(4) plans to go to college. 

Student demographic background. This study employed students background information 
from HSLS:09 data. The student’s gender was coded as a dummy variable (i.e., 0 = male, 
1 = female). Meanwhile, several dummy variables were generated to indicate the student’s 
race/ethnicity, including White, African American, Hispanic, Asian, or Other. Finally, the 
analysis included the student’s family socioeconomic status (SES), a composite variable 
calculated by the HSLS:09 using parent/guardian’s education, occupation, and family income 
when the student was in grade 9. 

Student school context. Variables used to measure students’ school contexts were derived from 
the baseline HSLS:09 school questionnaire. School level poverty was measured as the 
percentage of students eligible for free or reduced-price lunch. The variable was recoded into 
three categories: (1) 0-25 percent, (2) 26-75 percent, and (3) more than 75 percent. The study 
also used two other variables to measure school context: (1) percentage of English learners (EL) 
and (2) percentage of students with disabilities who received special education services. 

Analyses 

This section describes the analytical methods adopted to answer the study’s research questions. 
The overall model used is structural equation modeling (SEM), and the model is estimated using 
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Version 8.3 of Mplus. The SEM model has two elements: a measurement model and a structural 
model. The measurement model is used to verify how well the items measure the four 
motivational constructs they are presumed to measure. The structural part of the model examines 
how well each of the independent variables in the model (including the four motivational latent 
variables) relate to whether students who go to 4-year colleges choose a STEM major by 2016 or 
not. 

The Measurement Model. Confirmatory Factor Analysis (CFA) was used to assess the fit of the 
items to the four latent motivational variables (factors) that they are presumed to measure 
(science and mathematics identity; science and mathematics self-efficacy). The presumption is 
that each item loads on only the factor it is presumed to measure and none of the other three. 
Results from the CFA shown in Table 1 indicate an excellent fit of the items to the hypothesized 
4-factor model: a comparative fit index (CFI) = 0.995, Tucker-Lewis index (TLI) = 0.994, Root 
mean square error of approximation (RMSEA)=0.038. The standardized factor loadings of the 
items ranged from 0.92 to 0.93 for mathematics identity, 0.84 to 0.94 for mathematics 
self-efficacy, 0.90 to 0.97 for science identity, and 0.84 to 0.94 for science self-efficacy. These 
relatively large factor loadings suggest that the items were good measures of the latent 
constructs, supporting their inclusion in the structural model. The intercorrelations among the 
latent variables ranged from 0.20 to 0.66 as found in Appendix B. 
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Table 1. Measurement models for mathematics motivation and science motivation 

  Standardized 
factor loading (λ) 

Standard 
error 

Mathematics motivation     

Mathematics identity     

ID1: You see yourself as a mathematics person 0.92 0.02 

ID2: Others see you as a mathematics person 0.88 0.02 

Mathematics self-efficacy     

SE1: You are confident that you can do an excellent job on tests in this course 0.92 0.01 
SE2: You are certain that you can understand the most difficult material 
presented in the textbook used in this course 0.83 0.01 

SE3: You are certain that you can master the skills being taught in this course 0.91 0.01 
SE4: You are confident that you can do an excellent job on assignments in 
this course 0.90 0.01 

Science motivation     

Science identity     

ID1: You see yourself as a science person 0.91 0.02 

ID2: Others see you as a science person 0.94 0.02 

Science self-efficacy     

SE1: You are confident that you can do an excellent job on tests in this course 0.92 0.01 
SE2: You are certain that you can understand the most difficult material 
presented in the textbook used in this course 0.83 0.01 

SE3: You are certain that you can master the skills being taught in this course 0.91 0.01 
SE4: You are confident that you can do an excellent job on assignments in 
this course 0.90 0.01 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 2013 
National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 

Structural Model. To answer the research questions, structural equation modeling was used to 
examine the relationships between students’ STEM motivation, STEM coursetaking behaviors, 
STEM achievement, social networks, students’ demographic background, school background 
and students’ declaring a STEM major. The final model includes both the measurement and 
structural components. To estimate parameters, a Weighted Least Square (WLSMV) estimator 
was used. For the measurement model, the variance of each latent construct was fixed to one and 
the first indicator was estimated freely (Muthén & Muthén, 2018). 

Given the dependent variable—STEM major or not—is a dichotomous variable, a probit 
structural model was used where the inverse standard normal distribution of the probability of 
choosing a STEM major is modeled as a linear combination of the predictors: 
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𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) =Φ(𝛽𝛽0 + 𝛽𝛽1𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +

𝛽𝛽4𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽5𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽6𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ + 𝛽𝛽7𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 +

 𝛽𝛽8𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝛽𝛽9𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝛽𝛽10𝑃𝑃ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠 + 𝛽𝛽11𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛽𝛽12 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 +

𝛽𝛽13𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽14𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽15𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 +

𝛽𝛽16𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝛽𝛽17𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝛽𝛽18𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 𝛽𝛽19𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽20𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 + 𝛽𝛽21𝑆𝑆𝑆𝑆𝑆𝑆 +

𝛽𝛽22𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ + 𝛽𝛽23𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛽𝛽24𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜀𝜀i) 

where Yi represents choice of STEM or non-STEM major,β0 is the intercept, and β1 to β5 are the 
path coefficients for the four motivation latent constructs (mathematics identity, mathematics 
self-efficacy, science identity, and science self-efficacy), and students’ educational expectations, 
respectively. β6 to β10 are the structural coefficients for students’ coursetaking variables, 
including students’ credits earned in AP mathematics courses, credits earned in AP science 
courses, credits earned in Engineering and Technology courses, credits earned overall in STEM 
courses, and whether students earned at least one credit in Physics. Continuing, β11to β12 are the 
corresponding structural coefficients for students’ NAEP mathematics score at grade 12 in 2013 
and students’ GPA in STEM courses. β13to β15 are the structural coefficients for parent STEM 
occupation, parental educational expectations, and friends’ social influence. Next, the structural 
coefficients for students’ background, including female, Black, Hispanic, Asian, Other 
race/ethnic group, and SES, are estimated as β16 to β21. Finally, for school characteristics, β22 to 
β24 are the estimated coefficients for percentage of students eligible for free or reduced-price 
lunch at the school, percentage of EL students and percentage of students with disabilities who 
received Special Education services. Finally, εi is the disturbance term. This disturbance term is 
assumed to be uncorrelated with any of the independent variables in the model. Appendix C 
presents the detailed information regarding the path coefficients and the disturbance term of the 
SEM model. 

Results 
Descriptive statistics 

Student and school demographics 

Table 2 presents descriptive statistics for the student- and school-level demographic background 
variables for the 6,820 students enrolled in 4-year colleges. Among these students, 45 percent 
were male, and 55 percent were female. In terms of race/ethnicity, 62 percent were White, 
11 percent were African American, 15 percent were Hispanic, 6 percent were Asian, and 
7 percent indicated another race. With respect to school characteristics, 31 percent of students 
received free or reduced-price lunch, 5 percent were English learners, and 11 percent had a 
disability. The mean GPA for STEM courses taken in high school was 2.96 and the mean score 
for the dependent variable, grade 12 NAEP mathematics assessment, was 169.10. 
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Table 2. Student demographics, school background, and student math and STEM achievement for the 
final analytic sample 

Demographic characteristics 
Weighted percentage/mean 

Percentage Standard error 
Student demographic characteristics     

Sex     
Male 45 1.10 
Female 55 1.10 

Race/ethnicity     
White 62 1.60 
Black 11 1.00 
Hispanic 15 1.10 
Asian 6 0.60 
Other 7 0.50 

School background     
Mean school free/reduced lunch 31 1.00 
Mean school EL students 5 0.41 
Mean school students with disabilities 11 0.36 

  Mean Standard error 
Student achievement     

STEM GPA 2.96 0.02 
NAEP mathematics score 169.10 0.92 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016). 

Table 3 compares demographic background between students who chose non-STEM majors and 
those in STEM majors. Among male students, 34 percent chose STEM majors and 66 percent 
non-STEM majors. For female students, only 18 percent chose a STEM major. That is, 
percentagewise, roughly half as many females chose a STEM major compared to males. In terms 
of differences in choosing a STEM major by race/ethnicity, Asian American students were more 
likely to choose a STEM major compared to students from other race/ethnic backgrounds: 
42 percent of Asian students chose a STEM field while only 26 percent of White, 20 percent of 
African American, and 23 percent of Hispanic students chose a STEM major. 
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Table 3. Percentages of students having a STEM major at college by sex and race/ethnicity 

Student demographic characteristics 

Students who enrolled in 4-year college 
STEM major Non-STEM major 

Weighted percentage Weighted percentage 

Percentage 
Standard 

error Percentage 
Standard 

error 
Sex         

Male 34 1.50 66 1.50 
Female 18 1.20 82 1.20 

Race/ethnicity         
White 26 1.10 74 1.10 
Black 20 2.89 80 2.89 
Hispanic 23 3.02 77 3.02 
Asian 42 4.16 58 4.16 
Other 23 3.20 77 3.20 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 

STEM motivation 

Table 4 compares mathematics and science motivation between students in STEM and 
non-STEM majors. Two types of comparisons are presented here—one using the latent scores 
and the other using indices based on the item raw scores. First, when comparing students’ 
differences in factor means for mathematics and science motivation (i.e., identity and 
self-efficacy), STEM major students’ scores were set to be 0 to facilitate the comparison with 
non-STEM major students. Setting the means to a fixed value for one of the groups is required 
since latent variables do not have a natural metric. As expected, the results indicate that students 
in non-STEM majors had significantly lower scores on all four motivation latent variables 
compared to STEM majors. For example, the latent mean scores for mathematics identity and 
mathematics self-efficacy for non-STEM major students were −0.64 and −0.57, respectively, 
compared to 0 for STEM majors. Since the variances were set to zero for all four latent variables, 
the standard deviations are 1.0. As a result, the interpretation of the results is straightforward: 
non-STEM majors score nearly two-thirds of a standard deviation lower on the identity measure 
than STEM majors and nearly three-fifths of a standard deviation lower on the mathematics 
self-efficacy measure. Similarly, the non-STEM majors score nearly two-thirds of a standard 
deviation lower than the STEM majors on the latent science identity measure and just over 
two-fifths of a standard deviation lower on the science self-efficacy latent variable. All the 
differences are statistically significant at the 0.05 level. 

Second, the raw scale for each item related to motivation ranged from 0 to 3. Indices for each 
measure were constructed by adding students’ scores on the items comprising each of the scales 
and dividing by the number of items measuring the construct (e.g., two for each of the identity 
measures). Constructing indices using the raw score metric allows one to determine whether the 
average for any given group is more in the “agree” or “disagree” direction. Given the scale 
scores range from 0 to 3, the mid-point between agreeing and disagreeing is 1.5. Any score 
above 1.5 is in the direction of agreement, and any score below 1.5 is in the direction of 
disagreement. 
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The right panel of Table 4 shows that the average scores of all motivation constructs for 
non-STEM majors were significantly lower than those for STEM majors. For example, STEM 
majors scored 2.06 on the mathematics identity index, which suggests that students on average 
agreed that they are “a mathematics person” and others see them as a mathematics person as 
well. By comparison, for non-STEM majors, the average score on the index was 1.44, suggesting 
on average students disagreed slightly with the two statements. The results for mathematics 
self-efficacy are very similar with means of 2.06 and 1.47, respectively. For science identity and 
science self-efficacy, the pattern of mean differences is the same as for mathematics identity and 
mathematics self-efficacy (the mean for STEM majors is larger than that for non-STEM majors); 
however, note that the means for science identity and science self-efficacy for the non-STEM 
majors are 1.78 and 1.84 – both in the agree direction. That is, both the STEM and the 
non-STEM majors see themselves as “science persons” (and so do others); STEM majors are just 
stronger in their beliefs. 

Overall, STEM majors had stronger beliefs about their mathematics and science identities and 
self-efficacy than non-STEM majors.
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Table 4. Means for mathematics and science motivation latent variables 

  

Students in 4-year college (latent) Students in 4-year college (raw) 
STEM major Non-STEM major STEM major Non-STEM major 

Mean SD Mean SD P value S.E. Mean SD Mean SD P value S.E. 
Mathematics motivation latent variables                         

Grade 11 mathematics identity 0.00 0.79 −0.64 0.80 <0.001 0.04 2.06 0.80 1.44 0.89 <0.001 0.04 
Grade 11 mathematics self-efficacy 0.00 0.90 −0.57 0.88 <0.001 0.05 2.06 0.76 1.47 0.82 <0.001 0.03 

Science motivation latent variables                         
Grade 11 science identity 0.00 0.79 −0.64 0.81 <0.001 0.04 2.18 0.63 1.78 0.68 <0.001 0.03 
Grade 11 science self-efficacy 0.00 0.92 −0.43 0.90 <0.001 0.04 2.14 0.67 1.84 0.72 <0.001 0.03 

NOTE: Factor means for STEM major students’ mathematics and science motivation motivations (i.e., identity, self-efficacy, and interest) were set to 0 to facilitate the 
comparisons of factors means between STEM major students and non-STEM major students. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), First Follow-up (2012), 2013 Update, 
High School Transcripts (2013–2014), and Second Follow-up (2016); 2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment.
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SEM Results 

To answer the research questions, structural equation modeling was used to examine the 
relationships between students’ STEM motivation, STEM coursetaking behaviors, STEM 
achievement, social networks, students’ demographic background, school background and 
students’ choice to pursue a STEM major. 

Table 5 presents the unstandardized and standardized structural coefficients that are associated 
with choosing a STEM major in 4-year colleges. The fit of the data to the model was excellent 
with CFI = 0.98, TLI = 0.98, and RMSEA = 0.0227. To facilitate the interpretation of the results, 
marginal probability effects for some of the key variables for the current study including 
motivation and STEM coursetaking were calculated, while all other variables were held constant 
at their means. 

Research questions 1: What is the relationship between high school students’ STEM motivation 
including educational expectations and the choice of a STEM major in college taking into 
account family and school background factors, high school STEM coursetaking, STEM 
achievement, and students’ social networks? 

First, students’ science and mathematics identity were both statistically associated with students’ 
choice of STEM major, with corresponding standardized coefficients of 0.24 and 0.13. 
Statistically speaking, this means that for a one standard deviation increase in science identity, 
there would be an 8-percent increase in the probability of choosing a STEM major, when all 
other variables included in the model equal their means. Similarly, the standardized coefficient 
of 0.13 for mathematics identity suggests that a one standard deviation increase in mathematics 
identity corresponds to about a 4-percent increase in choosing a STEM major for an otherwise 
“average” student. 

By contrast, controlling for the other variables in the model, students’ mathematics self-efficacy 
and science efficacy had very small and non-significant associations with students’ choice of a 
STEM major, with standardized coefficients of 0.06 and 0.00, respectively. Correspondingly, for 
a one standard deviation change in mathematics self-efficacy, there is a net 2-percent change in 
the likelihood of choosing a STEM major—a difference which is small and not significant—and 
no difference as a function of science efficacy. 

Students’ educational expectations were hypothesized to be an important aspect of intrinsic 
motivation and the results from the probit analysis support that hypothesis with a significant 
coefficient of 0.07. This result can also be interpreted as students with higher level of educational 
expectations have a higher chance of choosing a STEM major at a 4-year college. 

Research question 2: What is the relationship between high school students’ STEM 
coursetaking, and their choice of a STEM major in college taking into account family and school 
background factors, STEM motivation, social networks, and STEM achievement? 

 

7 The model fit statistics were from one of the 400 imputed datasets. 
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Regarding students’ coursetaking behaviors in high school, results suggest that taking more 
credits in AP science, engineering and overall STEM related courses is critical for choosing a 
STEM major in college. The standardized coefficients for credits in AP science, engineering and 
all STEM courses taken were 0.12, 0.08, and 0.14, respectively. These coefficients correspond to 
net 4-percentage, 3-percentage, and 4-percentage point increases in the probability of choosing a 
STEM major for a one standard deviation increase in credits taken in AP science, engineering, 
and all STEM credits combined, respectively, when all other variables included in the model are 
equal to their means. 

Somewhat surprisingly, the number of credits taken in AP mathematics was not strongly related 
to choosing a STEM major as shown by the small and non-significant standardized coefficient of 
0.01. It is surprising because previous literature has shown a significant relationship between 
taking credits in AP mathematics and the choice of a STEM major (Gottfried, 2015). It is 
possible that this relationship is suppressed by other variables related to credits taken in AP 
mathematics in the model. 

In contrast, students who took at least 1 credit in Physics in high school were more likely to 
choose a STEM major in college than those who did not. The corresponding standardized 
coefficient was 0.09, which can be transformed and interpreted as follows: compared to those 
who did not take any credits in Physics, students who took at least 1 credit would have a 
3-percent greater likelihood of choosing a STEM major. 

Research question 3: What is the relationship between high school students’ STEM 
achievement, measured by students’ STEM GPA and NAEP grade 12 mathematics scores, and 
their choice of a STEM major in college taking into account family and school background 
factors, STEM motivation, social networks, and STEM achievement? 

The model also includes students’ prior STEM achievement including NAEP mathematics scores 
and GPA in STEM courses. Both variables were statistically significant indicators of students’ 
deciding to choose a STEM major in college. Their respective standardized coefficients were 
0.13 for NAEP achievement and 0.15 for STEM GPA in STEM courses. In terms of probability, 
students with a one standard deviation increase in their NAEP score would have a 4-percent 
increase in the likelihood of choosing a STEM major. Similarly, one standard deviation increase 
in students’ STEM GPA is associated with a 5-percent increase in the likelihood of choosing a 
STEM major. 

Research question 4: What is the relationship between high school students’ social networks 
and their choice of a STEM major in college taking into account family and school background 
factors, STEM motivation, high school STEM coursetaking, and STEM achievement. 

In term of students’ social networks, neither parental nor peer factors were significantly 
associated with students’ choice of a STEM major after controlling for other variables in the 
model. The standardized coefficients for at least one of the parents having a STEM occupation, 
parental educational expectations, and friends’ influence were 0.04, 0.05, and −0.02, 
respectively. 
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For students’ demographic background, the study showed some significant differences in 
choosing a STEM major as a function of students with varying demographic characteristics. 
Female students, as found in prior literature, were significantly less likely to choose a STEM 
major than male students. Regarding race/ethnicity differences, Asian students were more likely 
to choose STEM major than students from other racial groups. Meanwhile, there were no 
significant differences between White, African American, Hispanic and Other students in the 
probability of choosing a STEM major after controlling for all other variables in the model. 
Another finding was that students’ family SES as measured by HSLS:09 was not a significant 
predictor of students’ choice of a STEM major after controlling for other factors. 

Finally, at school level, the results suggested that students in schools with more than 75 percent 
of students eligible for free/reduced-price lunch were less likely to choose a STEM major than 
students who came from schools with 26 to 50 percent of their students receiving free or 
reduced-price lunch. However, this result should be interpreted with caution because the 
distribution of this variable was quite skewed with a very small number of cases for some of the 
categories. A school’s percentage of EL students and its percentage of students with special 
disability were not significantly associated with students’ choice of STEM major in college 
given both coefficients were near zero. 

Summary of findings 

The simple comparisons of mathematics and science motivation between students in STEM- and 
non-STEM majors indicated that STEM-major students have a higher level of mathematics and 
science motivation in all four measured constructs compared to Non-STEM major students. 
Non-STEM majors score nearly two thirds of a standard deviation lower on the identity measure 
than STEM majors and nearly three fifths of a standard deviation lower on the mathematics 
self-efficacy measure. Similarly, the non-STEM majors score nearly two thirds of a standard 
deviation lower than the STEM majors on the latent science identity measure and over two fifths 
of a standard deviation lower on the science self-efficacy latent. 

The SEM model results, which take into consideration of factors for other high school 
experiences, further identified the significant relationships between STEM motivation and 
having a STEM major in college. In conclusion, when examining to what extent students’ 
motivation influences students’ choice of a STEM major, the findings suggest that science 
identity had the strongest association with students’ choice of a STEM major with a standardized 
coefficient of 0.24. For a one standard deviation change in students’ science identity, there is an 
8-percent point difference in the probability of choosing STEM major when all other variables 
included in the model are equal to their means. This is followed by mathematics identity with a 
standardized coefficient of 0.13 and students’ educational expectations with a standardized 
coefficient of 0.07. Respectively, these two variables demonstrate 4 percent and 2 percent 
differences in the probability of choosing STEM major. 

Students’ high school STEM coursetaking and their corresponding achievement are also found to 
be significantly associated with the probability of students choosing a STEM major at college. 
The SEM results suggest that taking more credits in AP science, engineering and overall STEM 
related courses along with at least 1 Physics credit is critical for choosing a STEM major in 
college. Students’ prior STEM achievement, including NAEP mathematics scores and GPA in 
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STEM courses, were statistically significant indicators of students’ deciding to choose a STEM 
major in college. 

Students’ demographic background provides social context to understand why an individual 
student might have chosen a STEM major in college. Female students were less likely to choose 
a STEM major in college compared to male students. Asian students had a higher likelihood of 
choosing a STEM major than White students. Regarding the economic status of a students’ peers 
at school, the results showed that students who enrolled at schools with more than 75 percent of 
free or reduced-price lunch eligible students would have a lower probability of choosing a STEM 
major compared to students from schools with 25 to 50 percent of students eligible for free or 
reduced-price lunch. 
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Table 5. Unstandardized and standardized structural coefficients associated with entrance to 4-year 
college STEM major 

  Unstandardized 
coefficient S.E. p 

Standardized 
coefficient S.E. p 

Entrance to STEM major             
Motivation             

Mathematics identity 0.16 0.04 <0.001 0.13 0.04 <0.001 
Mathematics self-efficacy 0.07 0.04 0.10 0.06 0.04 0.10 
Science identity 0.28 0.05 <0.001 0.24 0.04 <0.001 
Science self-efficacy 0.00 0.04 0.96 0.00 0.04 0.96 
Educational expectations 0.08 0.04 0.04 0.07 0.03 0.03 

STEM coursetaking             
Credits AP math 0.01 0.07 0.88 0.01 0.04 0.88 
Credits AP science 0.20 0.05 <0.001 0.12 0.03 <0.001 
At least 1 credit Physics 0.22 0.08 <0.001 0.09 0.03 <0.001 
Credits engineering 0.15 0.04 <0.001 0.08 0.02 <0.001 
Credits STEM 0.08 0.02 <0.001 0.14 0.03 <0.001 

STEM achievement             
NAEP mathematics score 0.01 0.00 0.01 0.13 0.05 0.01 
STEM GPA 0.25 0.06 <0.001 0.15 0.03 <0.001 

Social network             
Parental STEM occupation 0.13 0.08 0.10 0.04 0.02 0.10 
Parental educational expectations 0.05 0.03 0.09 0.05 0.03 0.09 
Friends’ influences −0.03 0.04 0.53 −0.02 0.04 0.52 

Demographic background             
Female −0.43 0.07 <0.001 −0.36 0.05 <0.001 
Black 0.20 0.12 0.08 0.17 0.10 0.08 
Hispanic 0.15 0.12 0.20 0.13 0.10 0.20 
Asian 0.32 0.14 0.02 0.27 0.12 0.02 
Other 0.07 0.11 0.54 0.06 0.09 0.53 
Family SES −0.07 0.05 0.15 −0.04 0.03 0.14 

School background             
Percentage of students with 
free/reduced price lunch 0–25% −0.03 0.07 0.69 −0.02 0.06 0.69 
Percentage of students with 
free/reduced price lunch >75% −0.54 0.25 0.03 −0.45 0.21 0.03 
Percentage of EL students 0.00 0.06 0.95 0.00 0.05 0.95 
Percentage of students with 
disabilities 0.05 0.12 0.67 0.04 0.10 0.67 

NOTE: For gender, male was the reference group. For race/ethnicity, White was the reference group. For percentage of students 
with free/reduced lunch, category of 25 percent to 50 percent was the reference group. The standardized coefficients for dummy 
coded variables (Black, Hispanic, Asian/Pacific Islander, Other, Gender, and Percentage of students with free/reduced lunch) 
were based on STDY standardization. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 
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Discussion 

Using nationally representative high school student’s data, this study tested out a comprehensive 
conceptual framework to understand how high school experiences are related to students’ 
academic choice of entrance to a STEM major. Structural equation model results point to 
important aspects of high school experiences related to students’ entrance into STEM fields 
including students’ motivational beliefs, high school STEM coursetaking and STEM 
achievement. The limited measures of family and student influences that were available in 
HSLS:09 and could be included in the model were not related to the choice of a STEM major net 
of the other variables in the analysis. 

Mathematics Identity and Science Identity 

 Of the four motivational constructs (mathematics identity and self-efficacy; science identity and 
self-efficacy) measured at grade 11, both mathematics identity and science identity were related 
positively to students’ choice of a STEM major in college. Of the two, students’ science identity 
was the more important; indeed, it had the largest coefficient among all of the variables 
examined in the study. This finding highlights the significant role that academic identity plays 
for funneling more high school students into the postsecondary STEM pipeline. Academic 
identities (e.g., science identity, mathematics identity) have recently received increased attention 
in the literature, especially for their role in promoting under-represented students’ involvement in 
STEM fields. In this study, the measure of identity focused on seeing oneself as “a math/science 
person” and having that view supported by others. That is, one not only sees oneself as being 
“a math/science person,” but one is also identified by significant others (e.g., teachers, parents, 
friends) as “a math/science person.” The impact of content-specific identity on students’ 
academic behaviors, decisions, and achievement have been reported by other researchers. For 
example, Stets et al. (2017) found that students’ science identity was the only factor predicating 
whether students entered a science occupation after taking other variables in the model into 
account—variables such as students’ science self-efficacy, GPA, and other demographic 
background characteristics. The current study’s findings are in line with those of the Stets et. al. 
study in that mathematics identity and science identity were also the only motivation variables 
that were significantly associated with the likelihood of students entering a STEM major in 
college when taking into consideration of other motivation variables. 

This finding renders important practical implications. Role-specific identities (e.g., math identity, 
science identity) are important for motivating role-specific behaviors that can further reinforce 
that identity. Students with a science identity are likely to take more STEM related courses and 
participate in STEM related activities, which in turn appears to improve their STEM 
achievement. STEM achievement, in turn, increases the probability of choosing a STEM major 
which likely improves the probability of choosing a STEM occupation. 

Some teaching practices have been demonstrated to be effective in enhancing students’ academic 
identities. The Mathematical Agency Improvement Community (MAIC), a diverse network of 
K-12 schools in Southern California, has adopted student-centered math practices to teach 
underserved middle and high school students. The student-centered practices aim to create 
learning cultures that nurture mathematical identity and success. Practices highlighted under the 
MAIC program include, among others, the launching, exploring, and discussing of lesson 
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structure with students, anticipatory planning, students working in small groups, and students 
presenting their thinking.8 The MAIC classrooms are different from conventional classrooms 
that often the focus on “one right way” of working through problems (i.e., the way taught by the 
teacher). In MAIC classrooms, the “right way” is of less importance. Students in the MAIC 
classrooms are given the chance to share and develop their own mathematical thinking and 
problem-solving methods which allows them to discover the relevance of mathematics which in 
turn can lead to the development of a mathematics identity. 

The current study did not find statistically significant net relationships between either science or 
mathematics self-efficacy and students’ likelihood of choosing a STEM major in college. This 
finding is in contradiction with other studies (Jenson et al., 2011; MacPhee et al., 2013; 
Rittmayer & Bejer, 2008; Wang, 2013) in which self-efficacy has been highlighted as the most 
powerful and parsimonious factor that impacts students’ decision in choosing a STEM major in 
college. Furthermore, students’ self-efficacy belief is the key motivation variable in the SCCT 
framework. However, these studies did not include identity-related variables in their analyses. 
Bohrnstedt et al. (2020) found that students’ mathematics identity has a larger effect on students’ 
mathematics achievement compared to students’ self-efficacy beliefs when both self-efficacy and 
identity were included in the model. In addition, Bohrnstedt et al. (2020) investigated the 
longitudinal relationships between math identity and math self-efficacy and found that 
motivational beliefs are positively associated with each other and that the effect of mathematics 
self-efficacy on mathematics achievement was indirect through mathematics identity. Stets et al. 
(2017) summarized the relative importance of the two motivational constructs this way: 
“Our research shows that among all the factors considered, the identity process is the primary 
mechanism through which minority students choose a science occupation. Where other 
theoretical processes, like goal theory, self-efficacy theory, attitude theory, have effects, they 
operate through the identity process” (p. 17). 

Educational Expectations 

In addition to students’ sense of mathematics and science identity, the current study also found 
that students’ educational expectations were positively related to the likelihood of choosing a 
STEM major. Adolescents’ expectations about their future educational attainment are important 
because they influence academic choices, decisions, behaviors, and activities as well as their 
academic achievement. Previous research has established a link between students’ educational 
expectations and academic achievement, having an early interest in having a STEM major in 
college, and the successful completion of a college degree (Bozick, Alexander, Entwisle, 
Dauber, & Kerr, 2010; Lichtenberger & George-Jackson, 2013). The current study extends 
research on the significant impact of students’ educational expectations on academic outcomes to 
include students’ choice of a STEM major. While student expectations are likely not a sufficient 
cause for students to choose a STEM major, they may be a necessary one. That is, just because a 
student has high educational expectations is unlikely to lead a student to choose a STEM major 
in college. However, it appears that high educational expectations are common among those who 
do choose a STEM major. 

 

8 More details about the MAIC practices can be found at https://www.mathagency.org/network-research-findings. 

https://www.mathagency.org/network-research-findings
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Educational expectations, self-efficacy and identity are all motivators, but educational 
expectations appear to operate differently from the other two. As Bohrnstedt et al. (2020) note: 

“Educational expectations may be a general motivator while identity and self-efficacy are 
role-related motivators. As a result, one would predict that educational expectations will be 
related to taking whatever courses are perceived as necessary for the educational outcome 
aspired to. That is, educational expectations get translated into coursetaking since coursetaking is 
seen as instrumental to achieving one’s educational achievement goals (e.g., getting a master’s 
degree). By way of contrast, role-related identity (and self-efficacy) motivate one in a narrower 
way than educational expectations do…” In the current study, the motivation in “a narrower 
way” would be in pursuit of a STEM-related major. 

Unlike students’ educational expectations, the current study did not find a significant relationship 
between parents’ educational expectations for their adolescent child and students’ choice of a 
STEM major in college. And, the study found that having a parent with a STEM occupation was 
also unrelated to choosing a STEM major as were the academically related behaviors of their 
peers. As noted in the literature review, other researchers have documented the importance of the 
attitudes and behaviors of one’s peers. It should be noted that the measure of peer influences in 
this study did not include items that asked about peers’ intent to major in a STEM subject in 
college or their interest in STEM. Instead, the items available queried about whether peers 
(1) get good grades, (2) are interested in school, (3) attend classes regularly, and (4) have plans 
to go to college. 

High School STEM Coursetaking and Achievement 

High school coursetaking in STEM related subjects is both affected by and further develops 
students’ interests in science, technology, engineering, and mathematics. The same can be said 
about the roles of STEM-related self-efficacy and identity—they can both direct the taking of 
STEM coursework and as a consequence of successfully completing it, further develop feelings 
of competence about doing STEM related activities which in turn reinforce science, engineering 
and mathematics identities. And the stronger the identities, the greater the likelihood of pursuing 
a STEM major in college. 

Previous studies showed that taking high-level coursework in both mathematics and science 
during high school is key not only to students entering a STEM major, but also to students’ 
successful completion of a STEM college degree (Tyson et al., 2007; Rask, 2010; Wang, 2013; 
Gottfried, 2015). The current study found that earning more credits in AP science, engineering 
and STEM related courses in high school was significantly related to students’ choosing STEM a 
major in college. In addition, earning at least one credit in Physics during high school was 
another significant STEM coursetaking factor that increased the likelihood of choosing a STEM 
major in college even taking into consideration other STEM coursetaking variables like AP 
science and overall credits in STEM. However, this was not the case for earning at least one 
credit in Biology or Chemistry. This latter finding was also found by Tyson and his colleague’s 
study in 2017. They instead speculated that physics course-taking is a primary factor in STEM 
degree attainment. The current study revealed that taking Physics in high school significantly 
predicts a students’ chance of choosing a STEM major in college, the prerequisite step to 
completing a STEM degree. The National Alliance of Black School Educators (2012) stated that 
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“Physics is a gateway course for post-secondary study in science, medicine, and engineering, as 
well as an essential component in the formation of students’ scientific literacy […] College 
success for virtually all science, computing, engineering, and premedical majors depends in part 
on passing physics”9. However, only 36 percent high school graduates earned at least one 
Carnegie credit in Physics based on the latest High School Transcript Study data 
(U.S. Department of Education, 2013). The low percentage of high school students earning 
credits in Physics might be partially due to the fact that many high schools do not provide 
Physics courses. Based on the 2015–16 Civil Rights Data Collection, approximately 40 percent 
of U.S. high schools did not offer Physics. Increased students’ access to higher level STEM 
courses like Physics might be an effective route to broaden access to the STEM pipeline. 

The current study also found that taking applied STEM courses such as engineering is positively 
associated with the likelihood of students choosing a STEM major in college. Many previous 
studies found that selection and completion of math and science courses during high school are 
essential in moving more students toward choosing a STEM major in college (Blickenstaff, 
2005). The current study showed that not only the core STEM courses in math and science but 
also applied courses such as engineering play an important role in engaging more students in 
STEM fields. Students early exposure to applied STEM courses tends to boost their interest in 
and competency to master STEM subjects, which in turn serve to motivate them to choose a 
STEM major in college. 

Besides taking STEM courses, doing well in those courses is an important precursor of deciding 
on a STEM major. The current study included two measures of STEM achievement—students’ 
STEM GPA and grade 12 NAEP mathematics scores. Both showed significant, substantial 
relationships with students’ college STEM major enrollment. 

Student’s social context 

Students’ family and school contexts are important for understanding their academic decision of 
choosing a college major. The current study shows that student’s gender and race/ethnicity are 
significantly associated with the likelihood of students choosing a STEM major in college after 
taking all other variables into consideration. Female students were less likely to choose a STEM 
major in college compared to male students. The underrepresentation of women in STEM fields 
has been fairly persistent over the past decade, even though women have comprised the majority 
of postsecondary students since the 1980s. The most recent data from the Integrated 
Postsecondary Education Data System (IPEDS) still show that around 68 percent of 2017–18 
STEM degree recipients were male (Snyder et al., 2019). Additional research needs to be 
conducted to investigate whether female and male students have the same level of STEM 
motivation and whether the decision process of having a STEM major is impacted differently by 
motivation and other variables between female and male students. 

Regarding student’s race/ethnicity background, although some research has documented that 
certain race/ethnicity groups are less likely to entering a STEM field in college (Ma & Liu, 

 

9 The position statement is found at http://vector.nsbp.org/2012/03/16/national-alliance-of-black-school-educators-
endorses-physics-first. 

http://vector.nsbp.org/2012/03/16/national-alliance-of-black-school-educators-endorses-physics-first/
http://vector.nsbp.org/2012/03/16/national-alliance-of-black-school-educators-endorses-physics-first/
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2017), the current study found that the probability of Black or Hispanic students choosing a 
STEM major at college is not significant lower compared to White students, after taking into 
consideration student’s STEM motivation, STEM coursetaking and achievement, and their 
demographic background. The finding might suggest that Black and Hispanic students would 
have the same likelihood to choose a STEM major if they were sharing the same level of STEM 
motivation and taking similar STEM courses. 

To summarize, the findings from this study adds to the extant research literature showing the 
importance of STEM coursetaking in high school as a predictor of majoring in a STEM subject 
in college. But perhaps most importantly the results show the central role that motivation plays in 
who decides to major in a STEM field in a 4-year college. Of note is the role that identities play. 
Thinking and believing in oneself as a scientist and as a person who is good at mathematics were 
shown to be key in the choice of a STEM major. Although the research literature suggested that 
self-efficacy is the key motivational construct for understanding who chooses a college major in 
a STEM subject, in the presence of measures of science and mathematics identity, self-efficacy 
showed no direct effect on choosing a STEM major. While this result may seem counterintuitive, 
perhaps it should not be. To feel efficacious about doing science or mathematics requires that 
one not only has the ability to solve problems in those arenas but has the confidence to do so and 
a track record to back up that confidence. An identity in science or mathematics requires that one 
feels efficacious about solving problems in one or both of these arenas. What distinguishes an 
identity is that the self—who we see ourselves as being—is comprised of our identities. 
According to McCall and Simmons (1978) and Stryker (1968) the self can be thought of as a 
hierarchy of role identities. The more prominent (important) the identity, the more core it is for 
the self, and the more likely we are to activate it in any given situation. It is precisely because 
role identities define who we are that they have such strong motivating power. It is for this 
reason that identities are more important in predicting role-related outcomes than self-efficacy. 
Self-efficacy is necessary by buttressing and supporting our role identities. 

Next Steps 

There are several directions in which further research can go. This study revealed that there is a 
gender gap for students’ entrance to a STEM major in college, not only in the observed 
percentages of the STEM major choices of students of different gender which are well known, 
but also in the probability of choosing a STEM major while accounting for many other highly 
relevant predicators in the model. Female students were less likely to claim a STEM major in 
college despite their equal competences of STEM achievement compared to male students. For 
example, the most recent releases of grade 8 NAEP mathematics data show that female student 
have the same scores as male students within a point or two of males (National Report Card, 
2019). So why are females less likely to choose a STEM major? Future research could focus on 
establishing a multi-group SEM model to distinguish how motivation, STEM coursetaking and 
STEM achievement impact the likelihood of entering a STEM major differently between male 
and female students. This analysis would enable us to test whether the significant relationships 
identified in the current study function differently based on students’ gender. 

A study of gender differences will also be buttressed with the release of HSLS:09 college 
transcript data in the summer of 2020. This data will allow an exploration of the coursetaking 
and STEM achievement of females and males in college. Most important will be a determination 
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of whether females are less likely to take college-level STEM courses than males. If not, can the 
differences be explained, at least partially, because of differences in females’ compared to males’ 
self-efficacy and identity? 

Finally, the next iteration of data will be collected when the HSLS:09 participants are 30 years 
old, and when this occurs, it will be important to determine how many of those who majored in 
STEM subjects are working in STEM occupations. It will be especially important to determine if 
there are discrepancies by race/ethnicity and gender in the number of STEM majors working in 
STEM fields as well as between who majors in STEM and who is working in a STEM 
occupation for gender and or race/ethnicity. 
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Appendix A: Nested Imputations of Projected HSLS 
NAEP Scores 
The projected NAEP mathematics achievement scores for HSLS:09 participants were imputed in 
two stages, namely multiple imputations of HSLS:09 background variables and plausible value 
generation in a latent regression model. 

In the first stage, multivariate imputations by Chained Equations (MICE; van Buuren & 
Groothuis-Oudshoorn, 2011) method was used to impute the missing values for both level-1 
student variables as well as level-2 school variables in HSLS:09. The method started with a 
multi-level regression model to provide predicted values of missing data for a variable, given 
observed data. Once this variable was imputed, it was used in a sequence to impute the next 
variable. The sequence is repeated multiple times until convergence. The random draws of 
imputed values were implemented via predictive mean matching (PMM; Little, 1988), a 
semi-parametric imputation method that limits imputations to observable values only. A key 
advantage of PMM is that it can preserve non-linear relations even if the imputation model is 
wrong (MICE; Groothuis-Oudshoorn & van Buuren, 2011). In our study, 100 iterations were 
conducted for 20 sets of imputations. The imputation diagnostics were performed by conducting 
convergence checks. Convergence was decided by examining the trace-plots of multiple sets of 
the imputed values over the number of iterations. An example of the trace-plot for the variable 
X3TCREDAPSCI (the number of credits earned in AP science) is shown in Figure A-1. As can 
be seen in Figure A-1, the mean and the standard deviation of the variable for all 20 chains 
stabilize after the 40th iteration approximately, which is an indicator of convergence. 

In the second step, plausible values of students’ NAEP mathematics scores were generated in a 
latent regression model for each set of imputed background variables. Specifically, a 
five-dimensional IRT model (representing five NAEP mathematics subscales) was fitted to the 
HSLS:09 sample’s NAEP response data, where the non-overlap students’ responses were treated 
as missing at random. The item parameters were fixed at operationally calibrated values in 
NAEP. The five subscales were then regressed on each set of the imputed background variables 
separately via a Metropolis-Hastings Robins-Monro (MH-RM; Cai, 2010) algorithm in 
flexMIRT software. Twenty sets of plausible values were randomly drawn for the MH-RM run. 
Finally, the plausible values were linearly transformed to NAEP reporting scale using 
operational NAEP transformation coefficients. The latent regression model was repeated for each 
set of imputed background variables from the first stage. In total, 400 sets of plausible values 
(20 sets of plausible values for each of the 20 sets of imputed background variables) for NAEP 
mathematics scores were generated for the HSLS:09 sample. 
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Figure A-1. Examples of trace-plots for means and standard deviations of one variable over iterations for 
MICE convergence checks. 

NOTE: X3TCREDAPSCI refers to the number of credits earned in AP science. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 

As a quality check, the means and standard deviations of the imputed plausible values of the 
overlap sample were compared to those from NAEP to see if they have a similar marginal 
distribution. The means and standard deviations of the pooled NAEP operational plausible values 
and two examples of the 400 sets of plausible values imputed in this study are presented in 
Table A-1 and Table A-2. The comparisons indicated that there is little difference between our 
imputations and the operational ones for the overlap sample across subscales and the composite 
scale. 

Table A-1. Means of operational NAEP plausible values and imputed plausible values for the overlap 
sample 
  Number Measurement Data Algebra Composite 
Operational NAEP PV (pooled) 152.39 156.26 156.59 158.86 156.86 
First PV of first imputation 154.32 156.53 156.57 158.45 156.99 
First PV of second imputation 154.56 156.61 157.15 158.55 157.22 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 

Table A-2. Standard deviations of operational NAEP plausible values and imputed plausible values for 
the overlap sample 
  Number Measurement Data Algebra Composite 
Operational NAEP PV (pooled) 33.28 31.14 35.64 32.75 31.76 
First PV of first imputation 31.33 31.12 37.94 33.04 32.10 
First PV of second imputation 31.24 31.12 37.77 33.35 32.14 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 
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Besides the means and variances, we also compared the correlations between the subscales for 
the overlap sample between our imputations and the operational NAEP results. Table A-3 
presents the correlations between subscales and the composite scales using operational plausible 
values, while those using our own imputations are presented in Table A-4. The pairwise 
correlations are almost identical between the two sets of plausible values. 

Table A-3. Correlations of subscales and the composite scale using operational NAEP plausible values for 
overlap sample 

NAEP subscale or scale Number Measurement Data Algebra Composite 
Number 1         
Measurement 0.87 1       
Data 0.86 0.90 1     
Algebra 0.87 0.91 0.89 1   
Composite 0.92 0.97 0.96 0.97 1 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 

Table A-4. Correlations of subscales and the composite scale using nested-imputation NAEP plausible 
values for overlap sample 

NAEP subscale or scale Number Measurement Data Algebra Composite 
Number 1         
Measurement 0.87 1       
Data 0.87 0.89 1     
Algebra 0.86 0.90 0.88 1   
Composite 0.92 0.96 0.96 0.97 1 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 
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Appendix B 
Table B-1 presents intercorrelations among the latent motivation variables (including both 
mathematics and science motivation), high school STEM coursetaking variables, STEM 
achievement variables, social network variables and STEM major. 
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Table B-1. Correlations between mathematics motivation, science motivation, STEM coursetaking, background information, and STEM major 
  [a] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o] [p] [q] [r] [s] [t] 
a. STEM major 1                                       
b. Mathematics identity 0.33 1                                     
c. Mathematics 
self-efficacy 0.27 0.67 1                                   
d. Science identity 0.33 0.29 0.24 1                                 
e. Science self-efficacy 0.20 0.20 0.35 0.56 1                               
f. Educational 
expectations 0.14 0.17 0.20 0.27 0.21 1                             
g. NAEP Score 0.29 0.47 0.29 0.28 0.19 0.22 1                           
h. Credits AP math 0.24 0.33 0.20 0.19 0.13 0.18 0.53 1                         
i. Credits AP science 0.28 0.23 0.19 0.27 0.11 0.23 0.44 0.52 1                       
j. > 1 credit physics 0.20 0.24 0.18 0.15 0.03 0.09 0.33 0.24 0.22 1                     
k. Credits engineering 0.16 0.15 0.11 0.07 0.05 0.02 0.08 0.04 0.03 0.09 1                   
l. Credits STEM 0.26 0.25 0.23 0.23 0.12 0.11 0.20 0.27 0.30 0.31 0.35 1                 
m. GPA STEM 0.22 0.40 0.28 0.21 0.17 0.24 0.48 0.31 0.27 0.16 0.06 0.26 1               
n. Parental STEM 
occupation 0.07 0.06 0.03 0.08 0.04 0.02 0.15 0.11 0.11 0.08 0.01 0.06 0.06 1             
o. Parental educational 
expectations 0.10 0.11 0.12 0.08 0.07 0.23 0.17 0.13 0.17 0.09 0.00 0.10 0.17 0.01 1           
p. Friends’ influences 0.04 0.02 0.05 0.04 0.03 0.13 0.10 0.12 0.17 0.06 0.04 0.14 0.19 0.08 0.11 1         
q. Family SES 0.09 0.06 0.04 0.13 0.05 0.13 0.32 0.18 0.20 0.14 0.01 0.07 0.24 0.25 0.14 0.17 1       
r. School percentage 
FRPL eligible students 0.05 0.02 0.02 0.03 0.06 0.01 0.26 0.08 0.07 0.12 0.00 0.02 0.12 0.12 0.05 0.07 0.41 1     
s. School percentage of 
EL students 0.02 0.00 0.02 0.02 0.01 0.02 0.02 0.12 0.08 0.02 0.06 0.08 0.08 0.01 0.02 0.06 0.14 0.31 

  
1   

t. School percentage of 
SD students 0.01 0.01 0.00 0.02 0.00 0.06 0.09 0.04 0.04 0.02 0.05 0.05 0.01 0.01 0.06 0.01 0.11 0.29 0.04 1 

NOTE: [a] STEM major refers to STEM majors at a 4-year college. [h] Math is an abbreviation for mathematics. [r] FRLP refers to Free/Reduced Priced Lunch Program. [s] EL 
refers to English learners. [t] SD students refers to students with disabilities. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), First Follow-up (2012), 2013 Update, 
High School Transcripts (2013–2014), and Second Follow-up (2016); 2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 
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Appendix C 
Table C-1 presents the detailed information regarding the path coefficients and the disturbance 
term of the SEM model. 
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Table C-1. Coefficient descriptions 
Coefficients Representation 

Yi Choice of STEM major 
β0 Intercept 

Motivation 
β1 Mathematics identity 
β2 Mathematics self-efficacy 
β3 Science identity 
β4 Science self-efficacy 
β5 Educational expectations 

STEM coursetaking 
β6 Credits AP math 
β7 Credits AP science 
β8 At least 1 credit physics 
β9 Credits engineering 
β10 Credits STEM 

STEM achievement 
β11 NAEP mathematics score 
β12 STEM GPA 

Social network 
β13 Parental STEM occupation 
β14 Parental educational expectations 
β15 Friends’ influences 

Demographic background 
β16 Female 
β17 Black 
β18 Hispanic 
β19 Asian 
β20 Other 
β21 Family SES 

School background 
β22 Percentage of students with free/reduced price lunch 
β23 Percentage of EL students 
β24 Percentage of students with disabilities 
εi Disturbance term (uncorrelated with any of the independent variables) 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 2009 
(HSLS:09), First Follow-up (2012), 2013 Update, High School Transcripts (2013–2014), and Second Follow-up (2016); 
2013 National Assessment of Educational Progress (NAEP), Grade 12 Mathematics Assessment. 
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